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SOLUTION OF THE PROBLEM OF STRESS CONCENTRATION AROUND INTERSECTING DEFECTS 
BY USING THE RIEMANN PROBLEM WITH AN INFINITE INDEX* 

YU.A. ANTIPOV, G.YA. POPOV and S.I. YATSKO 

An analytic method is proposed for solving discontinuous boundary value 
problems for harmonic and biharmonic operators based on relying on 
apparatus developed to solve the Riemann boundary value problem with an 
infinite index. Boundary value problems for differential equations are 
first reduced to a system of two singular integral equations (SIE) with 
a fixed singularity by the generalized method of integral transforms, 
and then to a certain Riemann problem with zero index on a contour 
parallel to the imaginary axis. Subsequent transformations reduce this 
problem to two successively solvable scalar Riemann problems (the first 
with a plus-infinity index and the second with a minus-infinity index). 
The first problem is solved to entire-function accuracy, found from the 
condition for the second problem to be solvable (a convolution type 
Fredholm integral equation on a segment). This method is applied to the 
solution of the antiplane problem for a plane with a T-shaped slit, and 
also to the plane problem for a plane containing a cruciform slit (the 
slit edges are free of tangential loads), where the slit branches are of 
different length in both problems. The singularity in the solution of 
the SIE system at zero (the intersection of the slit branches) and also 
the stress intensity coefficients are found. The final formulas are 
reduced to a form convenient for numerical realization. 

Earlier /l/ SIE systems analogous to that under consideration were 
solved by approximate methods without taking account of the presence of 
the fixed singularity in the kernel. 

1. Reduction of the antiplane problem for a plane with a r-shaped slit 
to a vector Riemann problem. The following boundary value problem of mathematical 
physics is considered for a plane with a slit: 

Au (x, y) = 8, (z, Y) E RZ \ 1 

~(z~*o)=q(5),~~Ia; $(fo.Y)=r(h YEIb 

.2&-o)-~((2.+o)=x1(5), -,<x<+, 

~(-O,Y)-_((+O,y)-X*(Y), -m<y<+ = 

1 = {(z, y) E R*: 0 < tz < a, y = +k x = +o, 0 < Y < b} 

Z, = [O, al, Zb = IO, bl; x1 (Lr) = 0, t FE Ia; x2 (Y) = 09 Y z Z, 

(1.1) 

(1.3) 

(1.3) 

(1.4) 

The functions Q (z)and r(y) are known and satisfy the Hglder condition (from the classes 
H(Z,) and H (IL,), respectively). We understand the solution of the problem to be the set of 
functions {U (x, Y), X,(I), X,(y)) belonging to the following classes: 

u(5,!/)EC2(R2\Z), -+ O)EH:(Z,), $(O,~)EZI (I,) 

-&fO)EH*(&,)> +-&y)~H*(z,) 

x, (4 E H* (Za), X, (Y) E H* (Zb) 

satisfy relationships (l.l)-(1.4) as well as the closedness condition for the slit 
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0 0 

We note that If*(J) is a class of functions satisfying the Hzlder condition everywhere 
the segment J and allowing an integrable infinity at its ends. 
The boundary value problem formulated describes /2/ the longitudinal. shear of a plane 

with 

with a slit I, where 
Application of 

transforms) enables 

u(.r:, y) are the longitudinal displacements of points of the plane. 
a generalized scheme /2/ of the integral transformation method (Fourier 
us to obtain 

from (l.l), (1.3) and (1.4). 
To determine the X,, X, realizing condition (1.2) we arrive at a system of two SIE with 

a fixed singularity in the form 

(1.7) 

WI (T) = x1 (at), Q2 (t) = x, (67) 

h, (t) = -2q (at), h, (t) = -2f (bl), p = a/b 

For p=l this system can be solved exactly if we introduce a pair of functions 
w* (z) = 01 (z) +- 02 (2). Then the system reduces to two sequentially solvable equations of the 
Mellin convolution type. Their solution is constructed by the method described in /3/. We 
henceforth exclude the case p = 1 from consideration. 

Let us predetermine the system (1.7) in the semi-infinite segment I<t< 00 by introdue- 
ingthe one-sided functions @I* (t) and hj-(t)(j = 1, 2) such that tij+(t),,= 0, O< t< 1 and 

Qj(% o<t<1 
Oj_(t)= o L kj(t)t O<t<l 

t>1 ; k,-W=[O, t>l 

Then 

Taking into account that the functions kj(t) are bounded as t-+ $0 and t-+ 1 
analysing the Cauchy type integrals in (1.81, we obtain 

o,_ (t) = 0 (P), t - +o; wj_ (t) = 0 ([I - t1-‘4, t -$ 1 - 0 

Oj+ (t) = 0 (It - I]-‘h), t + 1 + 0; Wj+ (t) = 0 (t-l) 

t--t+w 

4 a I c $1 and then the Mellin transforms 

1 
rpf (s) =: 1 oj+ (t) t3 a, cpj- (s) = 1 o,_(t) P dt 

1 0 

are analytic functions in the half-planes Res<O and Re.s> --1 -a, respectively. 
we take account ofthevalues of the integrals 

-0, and 

(1.9) 

(1.10) 

Now, if 
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that converge for --1<Res(O and -2~ Res<O, respectively, and use the notation 

!zj-(s)=~hj-(l)r*dl 
0 

(hj’ (s) are analytic functions for Res> -i), then by usingtheMel1i.n convolution theorem /4/, 
we obtain the vector Riemann problem from 11.8) 

si' (t) = G (t) m- (t) -I- h- (t), t E L-l 
L = {s : Res = $')* max {-a - 1, --1)<y"<O 

(1.11) 

G (s) = 
II 

ctg 71s - p-1(2 sinn.s/2)-1 
- I"a*r(2sin ns/2)_' ctgns I 

(A (s) = dot G (s) = (2 cos2 ns - cos ns - 1) (2 sina ns)-') 

'p Is) = II 'pl (4 'pz (4 II is a piecewise-analytic vector with jump lines L, i.e., the vector v'(s) 
is analytic in R+ (Res,< v") and cp-(s) in D- (Res> f’); h-(s) = 
vector in D-. 

- II k- (Sf, &- (4 II is an analytic 

Since A(-*1J = 0 

Y"I~ mar{--a-I, 
probl.em (1.11) is examined on the following contour: L = {s: Res = 

-'/,)<y"< 0. Then A@)#0 anywhere on L. Taking into account that 
A (r" -+ it)--+ --1, It -+ fm and A (y") < 0 (A (y") - -V*, y" -+-o), we find that the total index of 
problem (1.11) equals zero. 

By virtue of (1.51 the solution of problem Cl.111 is sought which satifies the condition 

P%- (0) + cpz- (0) = 0 (1.12) 

Taking (1.9) and (1.10) into account as well as an Abelian type theorem for the Laplace 
transorm C/S/, p.473), we find the behaviour of the Mellin transform cpj*(s) at infinity. We 
consequently find 'p(s) = 0 (s-'I*), s--2 00, SC L. 

2. Solution of the V@C~W Riemann problem. we will henceforth consider PL>i 
everywhere without loss of generality. We represent the matrix G(s) in the form 
G,, (s)G_ (s), where 

G (s) = G, (s) 

G+(s)=I; ;e+$ G_(sf=~; -“;-‘I1 
G,(s) = 

d,= -(2sinns/2)-' +(- I)jCtg 5r.s 

detG*(s)=i% 

(2.1) 

The elements of the matrix G,(s) are analytic functions in f) f. Wefactorizetheexpressions 
Clj by using r-functions 

The functions K,*(S) are analytic and have no zeros inLI*, where 

Kr* (s) - (&s/4)-"*, K,* (s) N (&/4)‘J*, s --, 00, s E D* 

Taking account of (2.1) and (2,2) and introducing the piecewise-analytic vector 

@ (e) = II @I 6% @* (s) II 

(2.3) 

(2.4) 

into consideration, we obtain that the vector problem (1.11) is equivalent to two successively 
solvable Riemann problems 

I*. CD,+ (t) = $+I CD,- (t) + & (t). t E L (2.5) 
g, (t) = I$+'hr- (t) -h,- (t)l IK,+ @)I-’ 
2". CD,+ (t) = p-f-'Q1*- ft) + g, (t), t E L 

g, (t) = ~etgntK,- (2) @r- @) -h,- @)I f&+ @)I-" (2.6) 

where mjl (s) = 0 (i), @, (s) = 0 (s-l), s IZ co, SE L; g, (t) = 0 (t-‘t*)s & (t) = 0 (t-‘f for t + 30, t E L. 
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The set of all functions analytic in D+ and decreasing as s-'in Df as s+ 00, will be 
denoted byAl,* andtheboundedfunctionsby iIf,*. 

The solution of problem lo, with the plus-infinity index (IL>~), is sought in the class 
ill,*and the solution of problem Z", with the minus infinity index, is sought ind~,+.Thesolution 
of problem lo and Z" is determined by the following theorems (g(t) is a function satisfying 
the condition g (t) = 0 (P), t -+ co‘ .t E L, x < 0). 

Theorem 1. The inhomogeneous Riemann problem 

@+ (t) = v'+'@- (t) + g (t), t E L (2.7) 

with the plus-infinity index (v>l) has an infinite number of solutions intheclass Mj*(j = 

61) 
ca 

CD+(S) = 6, (C, + Czvs+l) + vs+lP (s) + 1 g”(x) x9 dx, s E D+ (2.8) 
1 

@- (S) = Sj, (CIV-sms-’ + C$) + P (S) - + 5 g”(x)xsdxl SED- 
0 

P(s) = 5 y(x)x”dx, g”(x)=&Sg(s)x+~ds 
I/V L 

where C,, C, are arbitrary constants, Sj, is the Kronecker delta, and Y(x) is an arbitrary 
function from the space L, (l/v, 1). 

Theorem 2. The homogeneous (g (t)s 0) R' iemann problem (2.7) with minus-infinity index 
(O<Y< 1) has no solutions in the class Mj *.It is necessary and sufficient for the solution 
of the inhomogeneous problem that g"(x) = 0 for v<x<l. The unique solution of (2.7) for 
this condition to be satisfied has the form 

(D+(s)=~g”(x)xsdx, SE D+; (D-(s) = - --&~g”(x)x3dx, sED- 
1 0 

Proof of Theorem 1. Let @* (s)E ~?f,*, then there exists one and only one pairof functions 
'p+ (x) E & (1, DO), cp- (x) E -& (0, 1) bounded as x--t 1 $0, x-t1 - 0, respectively, such that 

CD+ (s) = 3 ‘p+ (x) x8 ax, a- (s) = i cp_ (x) xSdx (2.10) 
1 ” 

Taking into account that g(t) = O(t”), t* 00, tE L (x<O), we have 

g 0) = f g” (4 xf dx, g” (4 E L, (0, c=) 
0 

Let us predefine: ‘p+ (x) = 0, 0 < x < 1 and cp_ (I) = 0, x> 1, consequently, we obtain 
instead of the boundary value problem (2.7) 

cp+ (x) = 'p_ (xiv) + go (x), 0 < x < 00 (2.11) 

'p+ (I) = 0, 0 < 5 < 1; cp_ (x) = 0, x > 1 

We consider three cases 

a) 0 < x < 1, 0 = Cp_ (x/v) + g” (2); 
b) l<x<v, c~+(x)=%(xlv)+g'(x); 
c) x > v, 'PC (x) = go (x). 

By using the inverse transform we hence find 

Q,'(s)= vs+i i rp_(x)xsdx~+~gO(x)xsdx, SED+ 
l/V I. 

1 1 

s 1 
W(s)= cp_(x)z8dz-- #+I s 

go (x) xa dx, s E D- 
I/V ” 

(2.12) 

where cp_ (2) is an arbitrary function from L, (l/v, 1) so that (2.8) is proved in the case j = 0. 
NOW let @* (S) E Ml*. Then ‘P+ (-2) and cp_ (4 are generalized functions in the re- 

presentation (2.10). Following the scheme of the proof for the case j = 0, we arrive at 
formulas (2.12) where 
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1 
e, [ela + (x - I~v)~]-~ Cl”, I/Y < x < f/v + 8, 

q.Pe’(x)= y(x), 1/~+e,<x<l-ee, 
e, [es2 + (1 - x)~]-’ CQo, 1 - e, < 5 < 1 

(CC, c,o are arbitrary constants) , and then taking into account that 

we arrive at (2.8) for j = 1. 

Proof of Theorem 2. Using the same reasoning as for the proof of Theorem 1, we arrive 
at problem (2.11) for O<Y< 1: 

a) O<X<Y, 0 = Cp_(dY)+ g"(X); 
b) v <X < 1, 0 = $ (x); 

c) r> 1, 'p+(m) = go (5.) 

We hence obtain the solvability condition for problem (2.7) and formula (2.9). 
Similar theorems governing the solution (in other spaces) of the Riemann problem with an 

infinite index (D*(x) = e'ar@-(x))+ g(z),-- <r-C +w,are presented in /6/. 
We turn to problems lo and 2O. For the solvability conditions 

Go (r) = 0, l/V < 5 Q 1 (2.13) 

to be satisfied the solutions of problems (2.5) have the form 

by virtue of Theorems 
We transform the 

(2.14) into (2.61, we 

@‘: (s) = Cl + c,p*+’ f p*+‘P (s) + 1 g,“(x) xs dx, s E D+ (2.14) 
1 

Cb,;(s)=C1~-+l + c, + P(s)- p-"-r3 g,o(z)r"ds, SED- 
0 

@C(s) = s g;(x)Xsdx, sED+; 
1 

1/P 
C&-(S)= - y*+' s g,"(s)x"dx, SE D- 

0 

P(s)= 5 v(5)5"dE, g;(x)= -& 1 gj (s)T+’ ds (j= 1, 2) 

I/B L 

1 and 2. 
solvability condition (2.13). Substituting the second relation into 
obtain an integral equation in the function r(E) 

1 Y(E)h(~)~=-cC,h(x)-cC,l(~r)+g,(~) (2.15) 
l/l, 
l/P<Xbl 

(2.16) 

In particular, when a constant load is applied to the slit edges and Q =r, then h,(t) = 
h, (t) = h = const and 

g, (x) = [K,+ (-l)l-'h, K,+ (-1) = 3'14 (21/+ 

The integral (2.16) is evaluated by the theorem of residues. We have (II,(x) is the psi 
function) 

(2.17) 
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i 
z,)II = -- a;‘:, - h, z;,: 1 -- 2 - 4w, 3ni3 = - lo/:% - h/H 

z,,al = ',':i h, ;L?- <m, z,, = i:l , F / L ,$,)L (nt = 0, 1, . .) 

Letting -I* (z) denote a continuous function I\* (L) = ‘1 (z) - /ia sgll (In z) for U<.C<W, 
where k, = [.\(I + 0)- .\(I -0)1/2 #O,we obtain an equation in place of (2.15), with the 
kernel 

-1, (s!E) + Xi" sgn (In z!E) 

After differentiation with respect to x this equation becomes a Fredholn integral 
equation of the second kind which will be equivalent to the initial equation (2.15) if com- 
pliance with (2.15) at the arbitrary point z,, E [l/p, II is required. The equivalence condition 
fixes one of the arbitrary constants C,, C,. The other constant is determined from the con- 
dition that the slit (1.12) is closed, which will take the following form when the last two 
relationships in (2.4) are taken into account: 

1/3n@,,- (0) + 20,- (0) = 0 (2.18) 

Taking into account that only the entire function p”‘P(s) must be known to construct 
the solution of problems (2.51, solving the integral Eq.(2.15) can be avoided. The following 
recipe is more convenient for a numerical realization. Let h, (t) E C’ [O, 11 (j = 1, 2), then the 
function y (EJallowsof the decomposition 

y (5) = ,=51, akEk-‘h IakI<k-a? 1 a-k I< pkk* 

(a > 1, k = 1, 2, . . .) 

and we have for the entire function p8+1P(s) 

We transform the solvability condition for (2.13) to the form 

(2.19) 

(the notation of (2.17) is used here), The unknown coefficients ak, cr are found from (2.19), 
say, by the collocation method, and the constant C,from condition (2.18), which we transform 
into 
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the initial vector Riemann problem (1.11) is determined by the formulas 

cpr- (a) = K,-(s) @r-(s) + p-“lKz- (s) cP2- (s), ‘pI+ (s) = K,+ (s) D2+ (s (2.20) 

(~a (4 = K, (4 @a (4, '~z+ (4 = K,+(s) '='I+ (4 + IL*'&+ (8) @: (4 

3. Determination of the singularity of the solution and the stress inten- 
sity coefficients. Taking (2.20), (2.5), (2.6) and (2.2) into account,we findthesolution 
of the SIE system (1.7) by using the inverse Mellin transform 

wj(T)= & 

s 

'p/(s)z+- as= - A- 

u 

Kl+ (s) Pa+ b) - El WI 
m A1 sin 3ns/2secns -I- 

I, I. 

KS+ Cd ah+(s) + h- (9 

I 

z-d--l as 

Azj sin 3m/4secxs~4 ZGqr' 
/&=pS+l, Al= 1 

By using the theorem of residues we hence find the singularity of the solution 

wj (7) N aj.c-'/I, 'c -+ +o (Uj = const) 

Let us introduce the stress intensity coefficients 

N$ = lim 1/2n(s - a)r,,(.z,+0), 
54+0 

N,*=;% 1/2n(b- Y) z~~(~:O,Y) 

@a = Gadax, 'c~. = Gaday) 

where G is the shear modulus. Furthermore, following the scheme in /7/, we obtainthefollowing 
relationships on the basis of (1.6): 

We 

account 

we have 

on 

Na+=-Na-=-GJfiii@Nl, N,+=-Nb-=-GT/nb/b,, (3.1) 

Nj=/izl/l--_mj(Q 

will determine the behaviour of the functions ml-(s), ma-(s) at infinity. Taking into 
the relationships 

%- (4 - c** %- (4 - -g2~(~-~)s-1,s--z~,s~D- 

on the basis of (2.20) and (2.3) 

'p1- (4 - 2C&'i., cp,- (s) - -2lg," (P-l) s-'/l, s -+ 30, s ED- (3.2) 

the other hand, according to theorems of Abelian type 

ml- (4 - NII/%-'$ ma- (s) - N$T/;s-'4 s --* 00, SED-\L (3.3) 

Comparing (3.2) and (3.3) and taking account of (3.1) , we obtain the following expressions 
for the unknown coefficients: 

N,,+ = -N,- = - G@C,, Nb+ = -Nb- = G1/z (2@)-‘g,” (II-‘) 

where g,'@-r) is found from (2.19). 

4. The plane problem for an elastic plane with a cruciform slit. Let US 

consider a planeRswith a slit J = {(z,Y)E Ra: --a<s<~,y=rtO;x=fO,--b<y<b}. A 
normal load % (x, fo) = q (4, --a < r < a; cX (f0, y)= r (y), -b < Y -c b (q (z) = q (-x), r (y) = r (-y)) 
is applied to the slit edges and there is no tangential load. The normal displacements on the 
slit undergo the discontinuity 

(~w)>=xlw~ 1x1<+? <+XY))=Xa(Y). IYl<W 

where <f (0)) = f (4 - f (+ 0); xl (4 = 0, r?? [--a, al, xa (y) = 0, y c r--b, bl. The tangential 
displacements are discontinuous. 

This problem is equivalent to the following discontinuous boundary value problem for a 
biharmonic operator 

A=U (5, y) = 0, (x9 Y) E R2 \ J (4.1) 

< 
8k;;;J)) >=< ak;p) >=o (k=O, 1,2) 

< 
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tu (x9 Y) is the stress function, Y is Poisson's ratio, and E is the elastic modulus). 
functions xl(r),xB(y) should satisfy the condition that the slit is closed 

&d2. + iWY=O 
0 i 

Using the discontinuous solution for an elastic plane /2/, p-212) and taking into 

that x1 (r) = --x1 (-r), x2 (Y) = --x8 (6Y), we reduce problem (4.1) to the following system 
SIE with a fixed singularity at zero: 

The 

account 
of two 

(4.2) 

01 (4 = Xl (a lm? 02 w = x2 @ 0 
h, (t) = -4cq (a I/i), h, (t) = -4cr (b I/i), p = (~/b)~ 

According to the scheme of Sect.1, system (4.2) reduces to the Riemann problems (1.11) 
with the matrix coefficient 

We will representG (s)in the form G (s) = G+ (s)GO @)G_(s), where 

II 

IPr (9 - h (s)l Y"+' 0 
Go (s) = 

Pl@) [Pz (4 + Pl (4lP-' 

and G* (s) are determined by (2.1) and we latter follow the scheme in Sect.2. 
The stress intensity coefficients c,(fO, y) and ol,(x, &-0) at the slit vertices 

K,=lim I/Zn(r-u)q,(x,t_O), 
x-a+0 

K, = lim 1/h (Y - b) uz (t_ 0, Y) 
!I-!,+” 

are determined by the same method as in Sect.3, and have the form 

K, = -(l/%)-ll/;C,, K, = (4 1/%)-l f&,0 (p-1) 

We apply the proposed method to the problem of the longitudinal shear of an elastic plane 
with a defect V which is a pair of slits or inclusions converging at an arbitrary angle 

{(r, 8) E W: 0 < r < a,, 8 = +O, 2n - 0; 0 < r < u2, O2 = a * 0) 

The problem reducestothe vector problem (1.11) with a coefficient of the form (4.3) and 
then to problems lo and 2O of (2.5). The method allows of extension to the case of a plane 
problem for an elastic plane with the defect V. 

In conclusion we note that the problems of Sects.l-4, posed for bounded domains, reduce 
to SIE systems of the form 

So (t) + Ro (t) = h (t), ‘0 < t < 1 (4.4) 
where S is a two-dimensional singular integral operator with fixed singularity corresponding 
to the characteristic systems (1.7) or (4.2) and R is a regular operator 0 = II 01, 02 II, h = 

II h,, h, Il. The method elucidated in Sect.2 enables the SIE system (4.4) to be regularized by 
the Carleman-Vekua method to reduce it to a system of three Fredholm integral equations of the 
second kind. 

1. 

2. 

3. 
4. 

REFERENCES 

SAVRUK M.P., Two-dimensional Elasticity Problems for Bodies with Cracks, Naukova Dumka, 
Kiev, 1981. 

POPOV G.YA., Elastic Stress Concentration Around Stamps, Slits, Thin Inclusions, and 
Reinforcements. Nauka, Moscow, 1982. 

GAKHOV F.D. and CHERSKII YLJ.I., Convolution Type Equations, Nauka, Moscow, 1978. 
TITCHMARSH E., Introduction to the Theory of Fourier Integrals /Russian translation/, 
Gostekhizdat, Moscow-Leningrad, 1948. 



365 

5. DOETSCH G., Handbuch der Laplace-Transformation. 1, Theorie der Laplace-Transformation. 
Birkhguser, Basel, 1950. 

6. BERKOVICH F.D., On the application of boundary value problems with infinite index to the 
investigation of integral equations. Proceedings of the All-Union Convergence on Boundary 
Value Problems, 49-54, Izd. Kasan. Univ., kazan, 1970. 

7. ANTIPOV YU.A., Certain mixed problems of elastic stress concentration in the torsion of 
rods. Dynamic Systems, 2, Vishcha Shkola, Kiev, 1983. 

Translated by M.D.F. 

PMM U.S.S.R.,Vol.51,No.3,pp.365-370,1987 
Printed in Great Britain 

oO21-8928/87 $lO.oO+O.OC 
01988 Pergamon Press plc 

STATE OF THERMAL STRESS AND STRAIN OF A PLATE WEAKENED 
BY A RECTANGULAR HOLE* 

1.1. VERBA and YU.M. KOLYANO 

By using the method of continuation of functions a solution is obtained 
for the stationary heat conduction problem and for the corresponding 
static problemofthermo-elasticity for an infinite plate weakened by a 
rectangular hole. 

1. Solution of the heat conduction problem. Let us consider a homogeneousisotropic 
unbounded plate of thickness 26 with a rectangular cutout Ix* 1 <ai (i = 1,2).Heat transfer 
from the external medium occurs by Newton's law through the surface of the cutout and the side 
surfaces x,=*6. We ensure the temperature of the medium flowing over the surfaces xg = f 
6 to be zero, while the temperature of the medium flowing over the plate rectangular boundary 
is t,. We then have the third boundary value problem for the Helmholtz equation in the domain 
external to the rectangle /l/ to determine the stationary temperature field T in the plate. 
We use the method of continuation of functions /2/ to solve this problem. To do this we 
introduce a new unknown function 8 that agrees with the desired function of the temperature 
T outside the rectangle and equals zero within, i.e., 

Taking account 
boundary conditions 
for the function 

8 = TM (Xl, x*) U.1) 
M hr ~2) = 1 - M (4 M ha), M (xi) = S, (xi + ad - 

s_ txf - ai) 

I 1, E>O 
S*(5)= 0,530,5, E=O 

(8, E<U 
of the syrmnetry of the problem relative to the coordinate axes and the 
on the rectangle contour, we obtain an equation with singular coefficients 

16, (Xi + ai) + 6 (Xi - ai)1 - T Iapzi M (&*I) x 
IS,’ (Xi + Ui) - a_’ (5% - %)I} 

hi+, x"+&, 
I 

2, i-l 
i-&l= 1 

, i=2 

(h is the thermal conductivity,a, and a1 (i = 1, 2) are heat transfer coefficients from the 
surfaces %, = fsr and 1 xi I< ai, 1 =ifl 1 = at*& 

The values of the function T on the rectangle contour that are in (1.2) are expanded in 
a Fourier series 
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